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10-1 THE ADJOINT-NETWORK CONCEPT IN THE FREQUENCY DOMAIN

In Chap. 9, the problems of sensitivity and tolerance analysis were introduced in the time domain
for linear memoryless circuits. An efficient technique, utilizing the adjoint-network concept,
was described for carrying out the sensitivity calculations. It was also mentioned that the method
can readily be extended to the sensitivity analysis of nonlinear memoryless circuits.

It will be shown next that all the results of Chap. 9 are applicable, with trivial modifications,
to the important problem of frequency-domain sensitivity analysis of dynamic circuits. As
already mentioned in Sec. 2-2, Tellegen’s theorem, which is based on the KCL given in (2-28)
and on the KVL given in (2-32), remains valid for any vector j satisfying (2-28) whether it
contains physical currents or not and for any vector v having a representation given in (2-32)
whether it contains physical voltages or not. Since the complex phasors associated with the
steady-state sine-wave branch currents and voltages of a network certainly satisfy Kirchhoff’s
laws, the derivations of Sec. 2-2 remain valid. Hence, we have, as in (2-36) and (2-37),

V=0T =0 (10-1)

Here, the vectors V and J contain the complex phasors of the branch voltages and branch
currents, respectively, of the network N. V and J contain the corresponding phasors for another
network N (the adjoint network) which has the same incidence matrix A as N.

From (10-1), we can follow the same steps as in Sec. 9-2 to arrive at the differential
Tellegen’s theorem valid for the complex phasors of branch voltages and currents:

JrAV —VTA] = z iV = Vedy) = 0 (10-2)

all branches

which is closely analogous to (9-16).

Next, exactly as for the memoryless circuits, we separate the branches of N into branches
containing independent voltage sources (for which AV, = 0), branches containing independent
current sources (with AJ, = 0), and internal branches. The output branch is again treated as a 0-
A current source if the output is a voltage and a 0-V voltage source if the output is a current. We
choose, as before, all independent sources equal to zero in N except for the one which
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corresponds to the zero-valued source at the output of N. This source is set equal to 1 A if the
output of N is a voltage and to -1V if the output is a current.
With these choices for the generator branches of N, (10-2) can be rewritten in the form

AVyor AJy = — Z (AVy — VieAJi)

all internal
branches

(10-3)

where Vj or J is the output of N. Assume now that the internal branch phasors Vi and Jx of N
can be related through a branch impedance matrix Z.

Vg =Z]Jp (10-4)

Here Vg and Jg contain the complex phasors Vi and Ji , respectively, for all internal branches of
N; Z contains the complex branch impedance and, for CCVS the gains Zy, . Then a derivation,
exactly duplicating that which provided (9-35), shows that the branch variables of N should be
chosen so as to satisfy

I73 = ZTiB (10-5)

Hence, the branch impedance matrix of N is Z = ZT. For this choice of Z, the right-hand side of
(10-3) becomes

_ngZ]B == § JUmBZyy = — § JuhAZ - E JUmBZym (10-6)
all internal all all CCVS
branches impedances l+m

Unlike the case in a memoryless circuit, here the AZ; are not simply identical to the element
tolerances; they are, however, closely related. From Ohm’s law valid for phasors, for an
inductive branch

AZ[ =](1)ALl
Zl =](1)Ll (10_7)
az, =2
L=75¢, 5
and for a capacitive branch
1 AC,
AZy = A— = (10-8)

joC — jwC?
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where the element values of L; and C; are treated as toleranced elements. For a resistive branch
or for the two branches of a resistive CCVS, AZ; = AR, and AZ,,, = AR;,,, as before.
Combining these relations with (10-3) and (10-6) gives the sensitivities of the output voltage V :

Wy - .
v, .
R, Jui

Vo _ Jui
¢, joCi i
v, o (10-9)

The analogy between (10-9) and Egs. (9-46) and (9-47) is obvious. For a current output, the

output current Jo replaces Vy .

Example 10-1 Find the sensitivities of the output voltage V to the element values of the simple

circuit shown in Fig. 10-1a.

Since the internal branches of the circuit contain only impedances, Z = ZT = Z and hence
the internal branches of N and N are the same. The only source of N is a 1-A (current source)
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Figure 10-1 (a) Physical circuit; (b) adjoint network in the frequency domain.

From A, by inspection,

E

h=hL==

R+ jwl + 1/jwC

~ 3.84 — j2.11mA
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For N, from Fig. 10-1b,

_ 1 R(wL + 1/jwC)

°7 "R+ jwlL+1/jwC

—232 —j422V

and hence

~

%
Ji = _EO ~ 4+0.232 + j0.422 A

and

~

. 7,
— =0~ 0767404224
Jo =) = 1 we J

(As a check, we note that J; — J, = 1 A.) Therefore, using (10-9), we have

ISl =J0?+0?  Ac = 1pF - Av = 0.081 +j0.0514

31mV

Vo =9
Vo & . .
3L —JoJpjo =~ (12.95 + j8.22) x 10° V/H = 1.295 + j0.822 V /uH
WV J3Js
= = ~ (0.81 + j0.514) x 101 V/F = 0.081 + j0.0514 F
S. aC jwC? (0.81 +0.514) x 10**V/ 0.081 +0.0514 V/p
and finally
a]/O 2 s -3 .
R - —JJ1 = (-1.78 —j1.131) x 107° V/Q = -1.78 — j1.131 V /kQ

The meaning of the last relation, for example, is of course that a 1-Q change in R results in a
change of —1.78 —j1.131 in the complex output phasor V. (This statement is valid to a first-
order approximation only, as discussed in Sec. 9-1.) The other two sensitivities can be
interpreted similarly.
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From the formula
B JjowL +1/jwC
" "R4jwL+1/jwC
one can find the sensitivities analytically. For example,

Wy JjwR

AL T (R+joL + 1/jwC)?
confirming our previously calculated result. The calculation of the other two sensitivies is left to

0

~ (1.295 + j0.822) x 106V /H
j

the reader.

It should now be obvious how all other results obtained in Chap. 9 can be extended to
frequency-domain sensitivity analysis. If the internal branch relations of N can be described by
the branch admittance matrix Y

Jg =YVy (10-10)

Then the adjoint network N has the branch admittance matrix ¥ = Y7 and the sensitivities of an
output voltage V, are given by

aVy A% WV OV

_—= - —_— = w

6Ll ](,()L% aCl v (10_11)
ALY Vo _ vom

aGl - i aGlm - lYm

where the last relation gives the sensitivity to the gain of a VCCS.
For the calculation of the sensitivities of an output current J, in all relations Jy replaces Vy .
The analogy between (10-11) on the one hand and Egs. (9-51) and (9-52) on the other is
manifest.
Often only a hybrid formulation of the internal branch relations is possible, i.e., often

] B Y A V31
[VBZ] B [M Z] []BZ] (10-12)
represents the only feasible description of the equations connecting the branch vectors

Jj Bl] Vg
= and Vg = [ 1] -
Is [,Bz 2= |y, (10-13)
Then a derivation essentially identical to that leading to (9-70) to (9-74) shows that the internal
structure of N must be such that

]fl] =Y. M [VBl] (10-14)

Vel 1=AT  z7 1|,
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holds. Then the sensitivities of the output voltage V, are given by the relations

Ve ifHpisinY

Vo | Vi if Hpy isin A
OHim | —fiVin if HyisinM
k_jl]m if Hy,isinZ

(10-15)

V) is to be replaced by Jy if the output is the current J, .

Note that the elements of A are the CCCS gains and hence are usually real. Similarly, the
elements of M are the (normally real) VCVS gains. The diagonal elements of Y are the branch
admittances and are therefore in the form Gy, joC;, or 1/joL ; the off-diagonal elements are the
(usually real) gains of the VCCSs. Dually, the diagonal elements of Z are branch impedances
(Ry, joLy, or 1/joC, ), while its off-diagonal elements are the (normally real) CCVS gains. For
example, if Z; = joL,; is the Hy element which is contained in Z, then, by (10-15), 0V, /0L, =
(0Vy/0Hy,)(0H, /0L;) = (—fl]l)(jw). Other sensitivities can be found similarly.

Also, group delay d¢p/dw , pole & zero sensitivities, etc. can be found via N
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10-2 Use the adjoint-network concept to calculate the sensitivities of the output V, of the active
integrator circuit shown in Fig. 10-14. Check your results using analytic differentiation.
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Figure 10-14 (a) Active integrator; (b) amplifier model. The radian frequency is @ = 10*rad/s.
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N Jo=Js—1=sCPs—1

Vs T ~ _
S u(sCls—1) +5CVs =0
Ri R,

- u

.'.V5= 1 1
R—1+R—2+(1+[,{)SC

= 8.4957 x 10! — j4.9737 x 103

~

~ V5 -2 .
Ji=—5>=-56638x 107 +3.3158

1

~

Vs -3 . -2
Jo = R = 1.6994 x 107° — j9.9473 x 10
2

Jo =5sCVs —1=-0.99667 + j5.6921 x 107>

)/ .
—¢ = joVsVs = 2.8311 x 107 - j8.2846 x 10° V/F

v,

Sp = ~Jus =37198 X 107 —j1.1046 x 107 V/Q
1

v,

T —JoJ, = 1.6487 x 1077 + j5.634 x 107° V/Q
2

vy

o Vaf, = —1.4065 x 1073 + j8.2618 x 1072



